

1

RadView Software Whitepaper

Load Testing Web 2.0 Technologies
Ajax-RIA-SOA-Web Services

Web 2.0, RIA, AJAX and SOA are terms and abbreviations we hear and

use on a daily basis. But do we know what they mean for us as

professional performance testers?

This document provides an overview of the relevant Web2.0 terms and

elaborates on how to run performance tests on these applications. The

document targets the performance testing professional as well as the

R&D manager looking for information on how to prepare for this new era.

2

Table of Contents

Overview...3

What is RIA?..3

What is Ajax? ..5

What are Web Services?...5

Styles of use..6

Remote Procedure Calls..6

Service-oriented Architecture...6

Representational State Transfer..6

What is SOA? ..7

SOA Semantic Gap ...8

SOA and ESB...9

How to load test RIA?..10

RIA as synchronous/asynchronous Ajax application...........................10

RIA using proprietary protocols...11

RIA using push model ...12

How would we load test such an application?12

How to load test Ajax applications? ...13

How to load test Web Services? ..13

Remote Procedure Calls..13

Service-oriented Architecture...13

Representational State Transfer..13

Using WebLOAD for load testing of Web Services14

Setting content type options ..15

How to load test SOA based applications? ..16

SOA closing the gap between functional & performance testing ...16

Immutable interfaces...16

Reusable service ..17

So how does this change the rules? ..17

Testing of SOA and ESB applications ..17

3

Overview

The internet world is evolving with new technologies and architecture
models. Web2.0 is a major evolution of Internet applications and provides

new options for internet application providers. Web2.0 enables improving
the user experience, creating more efficient applications and increasing

the productivity of the users and the enterprise.

People most often associate Web2.0 with user-generated content

websites, typified by tagging content, blogging, wish lists, and RSS feeds.
Some enterprise applications boast a recent Web 2.0 interface called

“Enterprise 2.0”, but, issues of performance, privacy and personalization
are still blocking many enterprises from adopting this new internet trend.
On the other hand technology enablers, such as the SOA system

architecture and RIA’s rich UI are likely to eventually converge with Web
2.0 concepts. The combination of different technologies, architectures and

concepts will all create new dimensions of internet applications.
RadView, as a leading provider of performance testing software for

Internet Applications, provides solutions and guidelines for testing Web2.0
applications. RadView’s current and future product roadmap offers a high
level solution enabling developers to secure the Performance,

Scalability and Reliability of their Internet Applications in general
and Web2.0 applications specifically.

This document provides an overview of the relevant Web2.0 terms and
elaborates on how to run performance tests on these types of
applications. The document targets the performance testing professional

as well as the R&D manager looking for information on how to prepare for
this new age.

What is RIA?

Traditional desktop applications provide great functionality and a rich user
experience but have always suffered from a higher cost of ownership due

to software maintenance and deployment issues. Web applications, on the
other hand are much more easily accessible and require no installation,
but lack the rich user interface (UI). Rich Internet Applications (RIA) are a

new type of web application that behave like traditional desktop
applications and provide a more productive, responsive user interaction.

RIAs provide several benefits for users:

• Easier access to application functionality enabled by a richer UI

• Fast response enabled by maintaining a good balance of application

tasks between the client and server tiers.

Some RIAs also include asynchronous communication between the client

and server, providing even better response to user requests and might
eventually even provide an offline work mode.

4

RIA is not a technology by itself, so we can find many methods and
techniques for its implementation. JavaScript combined with DHTML and

XMLHTTP Objects (the building blocks for Ajax) are the basic elements
for “do-it-yourself” type of RIA. By now, many companies have published

some type of Ajax Frameworks, such as the Google toolkit, which helps
developers tie the different pieces together. Adobe Macromedia, who
actually coined the term RIA in 2002, offers a full development platform

with Flash Player on the client side and Flex Data Services on the server
side; both can be integrated with the Adobe streaming server for

streaming video content. Flash applications run in the browser in a
“sandbox” environment communicating with the server using web services
or the Flex AMF protocol. The following diagram shows Adobe’s Flex 2 in

the enterprise architecture.

Microsoft has also introduced their RIA implementation in the form of
what is now called Microsoft Silverlight and formally known as Windows

Presentation Foundation (WPF) which provides a way to build single-
platform applications with some similarities to RIAs using XAML and
languages like C# and Visual Basic. In addition, Microsoft has announced

Windows Presentation Foundation/Everywhere which may eventually
provide a subset of WPF functionality on devices and other platforms.

As shown here in the Adobe Flex diagram above (as well as with other
vendor frameworks), many RIA shells include a combination of data and
multimedia content, making Video content a first class citizen in today’s

internet application. Mixing data and video together in a single
application requires special attention from testers. Streaming

video uses different protocols than data, usually hitting a different
streaming server, and uses different measurement counters for
validations.

ActiveX and Java applets have been around for a while but by their nature

provide the same characteristics as other RIA technologies. Both need no

5

installation, and provide a desktop-like user interface running inside a
sandbox in the web browser.

What is Ajax?

From Wikipedia, the free encyclopedia
Ajax, shorthand for Asynchronous JavaScript and XML, is a web

development technique for creating interactive web applications. The
intent is to make web pages feel more responsive by exchanging small

amounts of data with the server behind the scenes, so that the entire web
page does not have to be reloaded each time the user requests a change.
This is meant to increase the web

page's interactivity, speed, and
usability.

The Ajax technique uses a
combination of: XHTML (or HTML) and

CSS, for marking up and styling
information. The DOM is accessed

with a client-side scripting language,
especially ECMAScript
implementations such as JavaScript

and JScript, to dynamically display
and interact with the information

presented.

The XMLHTTP Object is used to exchange data asynchronously with the

web server. In some Ajax frameworks and in certain situations, an IFrame
object is used instead of the XMLHTTP Object to exchange data with the

web server, and in other implementations, dynamically added <script>
tags may be used.

XML is sometimes used as the format for transferring data between the
server and client, although any format will work, including preformatted

HTML, plain text, JSON and even EBML. These files may be created
dynamically by some form of server-side scripting.

Like DHTML, LAMP and SPA, Ajax is not a technology in itself, but a term
that refers to the use of a group of technologies.

As described in the section above, Ajax can be used for implementing RIA
and SOA client side applications.

For more details on how to test Ajax Applications using WebLOAD please
refer to “Performance Testing for Ajax Applications” on our
community site (www.webload.org) in the community resources section.

What are Web Services?

From Wikipedia, the free encyclopedia:
The W3C defines a Web service as a software system designed to support
interoperable Machine to Machine interaction over a network. Web

services are frequently just Web APIs that can be accessed over a

6

network, such as the Internet, and executed on a remote system hosting
the requested services.

The W3C Web service definition encompasses many different systems, but

in common the usage of the term refers to clients and servers that
communicate XML messages that follow the SOAP-standard. Common in
both the field and the terminology is the assumption that there is also a

machine readable description of the operations supported by the server, a
description published in WSDL.

Styles of use

Web services are a set of tools that can be used in a number of ways. The
three most common styles of use are RPC, SOA and REST.

Remote Procedure Calls

RPC Web services present a distributed function (or method) call interface

that is familiar to many developers. Typically, the basic unit of RPC Web
services is the WSDL operation. The first Web services tools were focused

on RPC, and as a result this style is widely deployed and supported.

Service-oriented Architecture

Web services can also be used to implement architecture according to
Service-oriented architecture (SOA) concepts, where the basic unit of

communication is a message, rather than an operation. This is often
referred to as "message-oriented" services.

SOA Web services are espoused by most major software vendors and
industry analysts. Unlike RPC Web services, loose coupling is more likely,

because the focus is on the "contract" that WSDL provides, rather than
the underlying implementation details.

For more information on SOA, see the “What is SOA?” section, later in this
document.

Representational State Transfer

Finally, RESTful Web services attempt to emulate HTTP and similar

protocols by constraining the interface to a set of well-known, standard
operations (e.g., GET, PUT and DELETE). Here, the focus is on interacting

with stateful resources, rather than messages or operations.

RESTful Web services can use WSDL to describe SOAP messaging over

HTTP, which defines the operations, or can be implemented as an
abstraction purely on top of SOAP (e.g., WS-Transfer).

As shown above, Adobe Flex data services uses REST style between their

flash player and web services server.

The different styles of use of web services are not just a semantic

or a technological difference. Rather, each style represents a
whole different view of the separation between the two acting

parties (the service consumer and the service provider). As a
result, the way we test these services will change accordingly.

7

What is SOA?

From Wikipedia, the free encyclopedia:

There is no widely-agreed upon definition of service-oriented
architecture other than its literal translation that it is an architecture
that relies on service-orientation as its fundamental design principle.

Service-orientation describes an architecture that uses loosely coupled
services to support the requirements of business processes and users.

Resources on a network in an SOA environment are made available as
independent services that can be accessed without knowledge of their
underlying platform implementation. These concepts can be applied to

business, software and other types of producer/consumer systems.

It is not surprising that we can’t agree on the definition of SOA. I once
heard a Gartner analyst describing SOA as a term that is defined in the
eye of the beholder:

� Programmers view SOA as means of invoking remote subroutines or a way

to call remote functions that do some functionality for you, receive and

return arguments.

� The Architect perspective on SOA is better manageability of outer layer

software patterns by way of normalization and registered interfaces.

� Administrators view SOA based on their role in the software game, and for

them it is heterogeneous distributed software.

� The Project leader refers to SOA as an improved engineering process

which makes his life better and easier by splitting the management

responsibilities between distinct teams.

� CIOs view SOA as a more affordable project by way of re-use. As shown

later, SOA is all about re-usable services.

� The CEO’s perspective on SOA is that it represents a more responsive IT,

since SOA projects should finish on time and on budget by means of

lowering the complexity and increasing the re-use.

So by looking at everyone’s perspective on SOA we start to get an idea of
what SOA is. It is about building remote services, which are registered
with public interfaces and distributed in a heterogeneous environment. In

the final analysis, SOA can be said to be composed of a set of services,
usually web services, consumed from within the client application to

provide some service to the organization. In reality we can find few a
forms of services as shown in the diagram below.

8

As shown in the diagram, all services are exposed as an interface; some
encapsulate a brand new service including new functionality and new
implementation. Obviously these ones are found in new applications

and/or new organizations. Other services are wrapped services where
the new interface wraps an existing implementation. In this case, all the

service does is expose it through new protocols and through a registered
interface repository. Lastly, the most complex service manifestations are
composite services that encapsulate more than one service (existing or

new), into one larger service.

The service consumer uses one of the different alternative transport
protocols to call on the service. The “by the book” transport shall use
SOAP and XML over HTTP protocol but other implementations might drop

the SOAP definition and just use their own XML over HTTP. Some cases
require messaging-type transports in which we see JMS (Java messaging

system) and SMTP replacing the HTTP protocol.

SOA Semantic Gap

Regardless of implementation, most software architects and software
modelers will see SOA as the next version of software modularity, starting
with the use of subroutines, through the object oriented age, up to

services, events and SaaS. With this in mind we have to note the
semantic difference in this process. Subroutines and components are all

modules of software while moving to a higher level as services and event
based systems we start modeling business functions.

9

While this was all noted and published before by analysts like
Gartner, it is important to note here that it affects the way we test

these services. While testing the module of software is purely a
developer’s task, testing the service (the module of business
function) involves both technical and business oriented people.

SOA and ESB

ESB or by its full name, Enterprise Service Bus, plays a key role in the

evolution of systems based on service oriented architectures. While SOA is
an architectural style rather than a product, several vendors offer

products which can form the basis of, or enable SOA, particularly
Enterprise Service Bus (ESB) products. ESBs provide infrastructure that
can be purchased, implemented and leveraged for SOA-based systems.

SOA relies heavily on metadata design and management. Metadata design
and management products are also critical to implementing SOA

architectures. ESB can be defined using the following characteristics:

� operating-system and programming-language agnostic.

� Uses XML as the standard communication language.

� Supports web-services standards.

� Supports messaging.

� Includes standards-based adapters for supporting integration with legacy

systems.

� Includes support for service orchestration

� Includes intelligent content-based routing services.

� Includes a standardized security model.

� Includes transformation services (Often via XSLT) between the format of

the sending application and the receiving application.

� Includes validation against schemes.

An example of a leading OSS provider is Mule:

10

How to load test RIA?

In the definition section we noted that RIA is not a technology by itself,

but rather a term used to define a style of application. Yet there are a few
characteristics which are worth highlighting when it comes to load testing
RIA applications. We shall divide RIA testing into three different types of

RIA implementations; Synced/A-synced Ajax based applications,
proprietary protocol based applications and the push model. Each requires

some specific consideration.

RIA as synchronous/asynchronous Ajax application

Generally speaking, the WebLOAD protocol level testing model allows

built-in support for RIA-Ajax testing. When we record the agenda, we do
not differentiate between a web request coming from the browser and a

request issued by the page using the XMLHTTPObject. The only difference
between different types of applications lies in the different data types and

content types they use. If the application doesn’t record as expected, you
can always enable recording any unknown types by changing the default
recording options so you can find out what your application is using. If

you already know what it is, you can set a specific content type in
WebLOAD’s recording options and record your application.

WebLOAD IDE framework

System under test

W
e
b
L
O
A
D
 a
g
e
n
d
a

Parameterization support

Database TxtTxt

System web services

Protocol proxy recorder

One thing worth remembering is that although your application might use
asynchronous calls to the server, the agenda executes synchronously,

meaning you will streamline your execution path.

11

For details on how to test Ajax Applications using WebLOAD please refer
to “Performance Testing for Ajax Applications” on our community site

(www.webload.org) in the community resources section.

RIA using proprietary protocols

Rich internet applications using a proprietary protocol to communicate

between the client and the server require special support by the testing
tools. For instance, Adobe flex data service uses a proprietary protocol

named Adobe Messaging Format (AMF) to serialize and deserialize data
objects passed to the REST web service interface or the Flex DS server.
WebLOAD needs to “understand” this protocol (as would any other load

testing tool), and generate a script that the load tester can read and edit;
additionally, the load engine needs to create well formatted messages

using the protocol definition, to be sent to the server.
During 2007 RadView is planning to release WebLOAD Professional with
an Adobe Flex data services 2 add-on, providing a complete solution for

load testing applications with Adobe based RIA.

As shown in the figure above, the Adobe Flex DS 2 Add-on includes a
proxy recorder which understands and translates the AMF protocol into an

editable script format. The load engine contains a player enabled to
generate AMF requests to the target Flex DS server.

As highlighted before, many rich internet application shells mix rich data
content with multimedia content. WebLOAD supports mixed protocol
testing in a single agenda which enables testing HTTP, AMF and streaming

in the same agenda. WebLOAD also supports the different statistical
measurements relevant to each protocol, capturing transactions per

12

second as a relevant counter for HTTP requests and bit-Rate as a separate
counter for streaming content.

RIA using push model

RIA is not just about new user interfaces and sync/asynchronous web

services calls. Advanced use of RIA will include different types of push
models also known as messaging/pub-sub/real-time type of scenarios.

When it comes to performance testing we must define the SUT boundaries
before we define the solution. The boundaries have not changed - it is still
the whole server as a black box. This means that when approaching load

testing, we must disregard any activities happening inside the server and
simulate/test activities received by the server and sent by it.

Let’s take a sample NBC game notification scenario where a few clients
register for an event on a specific game and wait idly for data to arrive.

Once the game starts an outside entity sends an update request to the
server which later triggers an event to be sent to all users.

The following diagram illustrates the sequence of events and calls
between the system and the clients.

Note that I am still referring to the SUT as a single unit assuming all
requests are coming from an outside source.

How would we load test such an application?

We need to run two agendas for this system. One represents the client’s

registration and is waiting for the notifications and the other represents
the external server sending the game results.

These two agenda need to be synched. For example, the game server will
not publish the game results before all clients have registered. Lastly, the

13

client’s agenda needs to wait for the events to arrive. For this to happen
we need a protocol which supports such a scenario. HTTP by itself does

not support it so it can’t be done with standard HTTP support, but in the
future we assume such applications will evolve using such protocols as

Adobe Flash and with them the ability to wait for events inside WebLOAD.
In the meantime, you can use your own client proxy implementation
written in Java or COM and call it from within your agenda.

How to load test Ajax applications?

For details on how to test Ajax Applications using WebLOAD please refer
to “Performance Testing for Ajax Applications” on our community site
(www.webload.org) in the community resources section.

How to load test Web Services?

There is no one good approach for load testing Web Services. Based on
your Styles of use, your testing requirements might vary.

Remote Procedure Calls

Remote procedure calls procedures or functions, as their name suggests,
and they have to be tested as such, using the Unit test approach. With

WebLOAD built-in support for protocol level recording you can use your
web service client proxy and trigger the web service. The result would be

an agenda with the different parameters used to call on the service. This
basic agenda can now be parameterized and be used as part of any
regression testing of your application. Keep in mind that we are not

aiming for a complete test of the application, only for a test of the specific
procedure. Once we have every procedure working as expected we can

move on to the system level testing.

This approach can be further extended to build your own performance

testing framework using WebLOAD. This will allow you to test your system
on the API level.

Service-oriented Architecture

Web services used in SOA are message oriented and heavily rely on the
WSDL contract. This means that the tester should focus on testing the

web service based on the WSDL and not on a specific consuming client.
This will ensure the service adheres to the contract definition regardless of

any specific usage of the service. For more details on SOA testing see
section 0.

Representational State Transfer

There are two common approaches for load testing your server. We can
aim for maximum transactions per second, regardless of the number of
real users and with no think-time between transactions. Alternately, we

can use a more realistic approach and have as many virtual users as we
need with reasonable think time between transactions. As described

14

above, the REST usage style is about passing the state to a stateful
resource. With this in mind we have to make sure we use the virtual client

model and think-time appropriately. Since the server has reserved some
stateful resources associated with each user, testing for maximum

transaction per second will divert the results.

Using WebLOAD for load testing of Web Services

With WebLOAD you can load test your web services on any of the
following levels: As part of the system test, as individual computing
units, and as part of your performance testing framework. Testing

Web Services as part of the system tests means we want to run our client
application which is usually hosted in the browser and run through given

scenarios. Some may just use standard web browsing and others may
involve back-end web service calls using Ajax. For any of them, we would
like to get a script which can be read and later be parameterized and used

for load testing the application.

WebLOAD provides all of this, since it records the interaction on the
protocol level and generates the different calls whether they are for
loading the page or for following a link or if they are triggered by an

XMLHTTPObject calling a Web Service returning XML or a JSON object.

The following sample, taken from
(http://ajax.asp.net/docs/Samples/Sys.Net.CallWebServiceMethods/cs/CallWebServiceMet

hods.aspx), shows how web page load requests and web services calls are

all the same for WebLOAD tester.

wlGlobals.GetFrames = false

wlGlobals.SaveSource = true

//This is just a regular page get request loading the sample page.

wlHttp.Get("http://ajax.asp.net/docs/Samples/Sys.Net.CallWebServiceMethods/cs/CallWeb

ServiceMethods.aspx")

//We clicked on the GET XML botton which caused a back-end call to the web service

returning XML.

wlHttp.Header["Referer"] =

"http://ajax.asp.net/docs/Samples/Sys.Net.CallWebServiceMethods/cs/CallWebServiceMet

hods.aspx"

wlHttp.Data["Type"] = "application/json; charset=utf-8"

wlHttp.Data["Value"] = ""

wlHttp.Post("http://ajax.asp.net/docs/Samples/Sys.Net.CallWebServiceMethods/cs/WebSe

rvice.asmx/GetXmlDocument")

// document.wlSource contains the XML returned from the server. in this sample we only

print it.

InfoMessage(document.wlSource)

Now, let’s look at how WebLOAD supports other levels of testing. The
individual computing unit level means we treat each Web Service as an

atomic application which is tested separately. As explained above, the
right way to test these types of services is by building the agenda using

the service client proxy. WebLOAD supports most common data types,
content types and file extensions out of the box without any modification
but it also provides a way to add your own types to the recorder options

and make WebLOAD “understand” your data types. Not only can you add

15

your own types, you can discover which types are used by your
application. Once you found out which types you actually need you can

add them to the default list which makes them available for future runs
even after you close WebLOAD.

Setting content type options

If you don’t know exactly what content type your application uses, the
best way to start recording is by turning on the “Record Unknown

types” in the record options.

This setting is sufficient for most known applications. If you still don’t see
your Ajax calls recorded in your application, check the “Record Unknown

Extensions” in the File Extensions tab.
Last but not least is using WebLOAD to build your performance testing

framework. If we look closely at the load testing architecture we can
divide the system into three parts. The client GUI application, usually
implemented as a browser application using static HTML or rich internet

applications such as Ajax applications. The second part is the internet
protocol available to access the system under test. This is usually

HTTP/HTTPS but may also include multimedia protocols such as RTP/RTSP
or “Web 2.0” protocols such as SOAP/XML or RSS over HTTP. The last part
is the system under test (SUT), which is the subject of our load testing

effort.

16

With the growing adoption of service oriented architecture (SOA), there is
a new layer that is worth mentioning here in this context, the system API.

In the SOA world the system API are the set of services offered by
different sub-systems and consumed by the client application, usually in

the form of web services. System APIs are not limited to SOA web
services implementations. Any reasonably stable system has some form of
separation between the GUI and the business logic functions, which can

be accessed via a stable System API. Since these APIs are considered
more stable than the trendy GUI application consuming them, a method of

load testing is required which is not affected by the ever changing GUI
application. This is where the LOAD testing framework comes into play.
The load testing framework allows you to build new load test agendas

without recording a new script, thus eliminating the effect of changes in
the UI. It uses the pre-defined system API calls like any other callable

object within your JavaScript code. The agenda accesses external
resources to get your parameters for each of the calls.

For details on how to build your performance testing framework using
WebLOAD please refer to “Building a Performance Framework” on our

community site (www.webload.org), in the community resources section.

How to load test SOA based applications?

SOA based applications are built using some form of Web Services as
described in section 0. This section describes a few unique requirements

worth noting, regarding load testing of SOA based applications.

SOA closing the gap between functional & performance

testing

There are different offerings on the tools market for functional testing and
performance testing. This worked well for most web applications to date,
since functional testing required user interface manipulation while

performance testing did not involve the client side and concentrated on
sending smart load requests to the back-end server. While performance

testing always required a specialized tool for automation, it had always
been possible to complete functional testing by adding manual efforts.

With the new evolution of Service Oriented Architecture (SOA) the rules of
the game have changed. Service oriented architecture is all about

immutable interfaces and reusable services.

Immutable interfaces

SOA is not another form of object oriented design. It is an evolution of
OOP and the three tier architecture where one of the key factors for

making an implementation successful, are the immutable interfaces. The
services interface must be well defined and as immutable as possible.
Otherwise, external users (outside of the scope of the monolithic

application) will not be able to keep up-to-date with interface changes.
This fact by itself makes testing automation worthwhile! The key obstacle

for testing automation are frequent changes that result in frequent
updates to the testing script. Now, with SOA immutable interfaces, the
testing client is just another client of the service.

17

Reusable service

Gartner claims that a good reusability matrix is 30%, meaning that if 30%

of your services in the organization are being used by other applications
then you are in a good shape. SOA preaches for re-usability and is the key

argument for pursuading the CIO: SOA means more affordable IT due to
reusability. This fact makes testing of SOA applications important than
ever. An unstable service compromises not just the integrity of its

monolithic application but also of all the other applications relying on this
service.

So how does this change the rules?

The rules have changed because now it is very hard to differentiate
between the functional testing and performance testing of the service.
They are both done using the same technology (mostly by calling the

SOAP method over HTTP). We can write the same call and validate the
result for functional testing and later use the same call to load the server

and validate the performance. We are not claiming that a good testing
design will definitely use the same script for both functions but it will
definitely use the same tool and technology and provide higher

productivity for the testing engineer.
WebLOAD native support for Java Script and XML makes it very easy for

you to consume a web service, trigger different operations and validate
their results. You can load your XML response into the XML parser and
validate it or use JavaScript eval function to convert your JSON response

into an object and manipulate it in your agenda.

Testing of SOA and ESB applications

With standard autonomous applications, we knew who the client and the

server were and how they interacted with each other, which made testing
straight forward. SOA added a second level of complexity when the

applications are not an island but rather a mix of services consumed by a
mix of clients. We resolved that complexity by separating the services
testing from the consuming client testing as suggested in this document.

Integrating SOA with ESB makes testing even harder, since we now have
to think about the chain reaction of a service call (or message sent) to the

ESB. This raises a few questions on how to approach testing for such
systems, or collection of systems: What are the boundaries of your tested
application? How should the required throughput of my application be

analyzed when the input is driven not by user interaction but from ESB
raised events? Will we face a new term named “Enterprise level testing”

following the traditional system testing?

These are all important questions, yet to be answered. With the evolution

of such systems and adoption of the underlying technologies you can
surely expect RadView with WebLOAD to be leading the way.

18

Contact Information:

North America RadView Software Inc.

991 Highway 22 West

Suite 200

Bridgewater, NJ 08807

Email: info@RadView.com

Phone:908-526-7756

Fax:908-864-8099

Toll Free:1-888-RadView

United Kingdom RadView Software (UK)

Email: info@RadView.com

Phone: +44-080-81011165

Other Countries RadView Software Ltd.

14 Hamelacha Street

Rosh Haayin 48091, Israel

Phone:+972-3-915-7060

Fax:+972-3-915-7683

RadView corporate website: www.radview.com

WebLOAD community website: www.webload.org

